CFA Logo
Новости Прайс-лист [Б/У] Для ноутбуков Заказ, Оплата, Доставка Сервис объявления Драйвера Статьи Как нас найти Контакты
Новости
RSS канал новостей
В конце марта компания ASRock анонсировала фирменную линейку графических ускорителей Phantom Gaming. ...
Компания Huawei продолжает заниматься расширением фирменной линейки смартфонов Y Series. Очередное ...
Компания Antec в своем очередном пресс-релизе анонсировала поставки фирменной серии блоков питания ...
Компания Thermalright отчиталась о готовности нового высокопроизводительного процессорного кулера ...
Компания Biostar сообщает в официальном пресс-релизе о готовности флагманской материнской платы ...
Самое интересное
Программаторы 25 SPI FLASH Адаптеры Optibay HDD Caddy Драйвера nVidia GeForce Драйвера AMD Radeon HD Игры на DVD Сравнение видеокарт Сравнение процессоров

Зарядное устройство для автомобильного аккумулятора из компьютерного блока питания ATX с защитой от переполюсовки и короткого замыкания.

Это одна из статей раздела «Полезно знать». Отобразить Все темы > Другие темы

Ещё близкие по теме статьи:


Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего "коня". Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр :) Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.

И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

За основу была взята схема описанная в статье "Компьютерный блок питания - зарядное устройство". Согласно инструкции для переделки подойдет практически любой компьютерный блок питания, имеющий в своей основе генератор на микросхеме TL494 (ее аналоги — КА7500 и отечественная КР1114ЕУ4).

Начальная схема переделки выглядела так:

рис.1

Блок питания решено было взять Codegen 250W 250X1, вот такой:

Codegen 250W

Внутри он выглядел вот так, схема построена на необходимом мне ШИМ контроллере KA7500B:

Codegen 250W

Была найдена принципиальная схема блока питания Codegen 250W 250X1:

Codegen 250W scheme

Для начала выпаиваем всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.

Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.

На принципиальной схеме изменения показаны красным цветом:

доработка схемы



Так как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.

Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.

Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт - 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.

Для защиты от переполюсовки я изначально отказался от использования реле. Хотелось всё сделать без реле, чтобы срабатывание и сброс защиты происходил автоматически. За основу была взята схема описанная в статье "Защита от переполюсовки зарядного устройства". Защита построена на полевом транзисторе IRFZ44N (можно использовать аналоги на напряжение от 30 вольт и ток от 40 ампер, например 40N03P или лучше 40N06).

Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.

Защита от переполюсовки

В качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:

100v 10a multimeter

Такой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.

Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:

100v 10a multimeter

А вот и принципиальная схема измерителя:

100v 10a multimeter

Как можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика - 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.

схема защиты

Поясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.

Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт - транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).

Добавлены индикаторы на светодиодах:

  • VD1 "зелёный" - индикатор наличия напряжения на выходных клеммах
  • VD3 "синий" - индикатор срабатывания защиты
  • VD5 "красный" - индикатор обратного подключения аккумулятора (переполюсовки)

Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:

схема защиты, полная

Ну и наконец фото уже собранного зарядного устройства:

Зарядное, фото 1 Зарядное, фото 2 Зарядное, фото 3

Зарядное, фото 4 Зарядное, фото 5 Зарядное, фото 6

Зарядное, фото 7 Зарядное, фото 8 Зарядное, фото 9

Зарядное, фото 10 Зарядное, фото 11

Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!




Другие статьи из раздела Полезно знать:

сергей 2018-04-20 06:38:11
Посоветуйте, пожалуйста, как и из чего сделать шунт 0,01 ом. У меня наверное не тот шунт - 10-15 замыканий в защите и один раз загорается лампа на 40 вт.

[Ответить]
↑ 0 ↓
Вадим 2018-04-22 07:26:39
Только при использовании параллельных малых сопротивлений, порядка 0,33 ома, 0,22 или около того. Несколько штук в параллель, чтобы не грелись и расчётное сопротивление было необходимое.

[Ответить]
↑ 0 ↓
сергей 2018-04-19 06:20:48
Защита при включении сразу же срабатывает,без нагрузки(на выходе китайский вольт-амперметр) . Пришлось убрать конденсатор с8(вернее уменьшил в три раза). Тогда все работает!

[Ответить]
↑ 0 ↓
Вадим 2018-04-22 07:30:06
Купите на рынке спираль для электропечки - с ней очень удобно настраивать защиту создавая необходимую нагрузку. С лампочками сложнее.

[Ответить]
↑ 0 ↓
Сергей 2018-04-17 10:46:17
А можно показать стрелочками где крр. чёрн син ? Исходя из перемычек.

[Ответить]
↑ 0 ↓
Сергей 2018-04-16 17:23:56
Огромное спасибо за статью! Я не могу настроить подобную схему защиты т.к. она сразу уходит в неё. Но я " чайник" и не могу понять подключение ампервольтметра. На схеме красный квадрат, а в нём +- Кра Чёр Син???? Можно пояснить для особо тупых какие провода куда подключить?! заранее спасибо!

[Ответить]
↑ 0 ↓
Вадим 2018-04-16 19:07:41
На схеме подписаны красными надписями 5 чёрных точек (проводов) самого вольтамперметра. Поднимитесь на пару рисунков вверх и увидите схему подключения вольтамперметра, на ней 5 проводов подключения: плюс (тонкий красный), минус (тонкий чёрный), толстый красный, толстый чёрный и толстый синий.

[Ответить]
↑ 0 ↓
сергей 2018-01-05 18:50:13
в защите лучше поставить вместо irfz44 другой, например irl2505. У меня irfz44 сгорал несколько раз, а с irl2505 ни разу!.

[Ответить]
↑ +2 ↓

Страницы: [1]

Оставить комментарий

Ваше имя:
Ваша почта:

RSS
Комментарий:
Введите символы: *
captcha
Обновить


 
 




Хостинг на серверах в Украине, США и Германии. © www.sector.biz.ua 2006-2015 design by Vadim Popov